
Prometheus

Prometheus
Best Practices and Beastly Pitfalls

Julius Volz, April 20, 2018

Prometheus

Prometheus

Areas

● Instrumentation
● Alerting
● Querying
● Monitoring Topology

Prometheus

Instrumentation

Prometheus

What to Instrument

● "USE Method" (for resources like queues, CPUs, disks...)

Utilization, Saturation, Errors

http://www.brendangregg.com/usemethod.html

● "RED Method" (for request-handling services)

Request rate, Error rate, Duration

https://www.slideshare.net/weaveworks/monitoring-microservices

● Spread metrics liberally (like log lines)

● Instrument every component (including libraries)

http://www.brendangregg.com/usemethod.html
https://www.slideshare.net/weaveworks/monitoring-microservices

Prometheus

Metric and Label Naming

● Prometheus server does not enforce typing and units
● BUT! Conventions:

○ Unit suffixes
○ Base units (_seconds vs. _milliseconds)
○ _total counter suffixes
○ either sum() or avg() over metric should make sense
○ See https://prometheus.io/docs/practices/naming/

https://prometheus.io/docs/practices/naming/

Prometheus

Label Cardinality

● Every unique label set: one series
● Unbounded label values will blow up Prometheus:

○ public IP addresses
○ user IDs
○ SoundCloud track IDs (*ehem*)

Prometheus

Label Cardinality

● Keep label values well-bounded
● Cardinalities are multiplicative
● What ultimately matters:

○ Ingestion: total of a couple million series
○ Queries: limit to 100s or 1000s of series

● Choose metrics, labels, and #targets accordingly

Prometheus

Errors, Successes, and Totals

Consider two counters:

● failures_total
● successes_total

What do you actually want to do with them?
Often: error rate ratios!

Now complicated:

 rate(failures_total[5m])
/
 (rate(successes_total[5m]) + rate(failures_total[5m]))

Prometheus

Errors, Successes, and Totals

⇨ Track failures and total requests, not failures and successes.

● failures_total
● requests_total

Ratios are now simpler:

 rate(failures_total[5m]) / rate(requests_total[5m])

Prometheus

Missing Series

Consider a labeled metric:

ops_total{optype=”<type>”}

Series for a given "type" will only appear
once something happens for it.

Prometheus

Missing Series

Query trouble:
● sum(rate(ops_total[5m]))

⇨ empty result when no op has happened yet

● sum(rate(ops_total{optype=”create”}[5m]))
⇨ empty result when no “create” op has happened yet

Can break alerts and dashboards!

Prometheus

Missing Series

If feasible:
Initialize known label values to 0. In Go:

for _, val := range opLabelValues {
 // Note: No ".Inc()" at the end.
 ops.WithLabelValues(val)
}

Client libs automatically initialize label-less metrics to 0.

Prometheus

Missing Series
Initializing not always feasible. Consider:

 http_requests_total{status="<status>"}

A status="500" filter will break if no 500 has occurred.

Either:

● Be aware of this

● Add missing label sets via or based on metric that exists (like up):
 <expression> or up{job="myjob"} * 0

See https://www.robustperception.io/existential-issues-with-metrics/

https://www.robustperception.io/existential-issues-with-metrics/

Prometheus

Metric Normalization

● Avoid non-identifying extra-info labels
Example:
cpu_seconds_used_total{role="db-server"}
disk_usage_bytes{role="db-server"}

● Breaks series continuity when role changes
● Instead, join in extra info from separate metric:

https://www.robustperception.io/how-to-have-labels-for-machine-roles/

https://www.robustperception.io/how-to-have-labels-for-machine-roles/

Prometheus

Alerting

Prometheus

General Alerting Guidelines

Rob Ewaschuk's "My Philosophy on Alerting" (Google it)

Some points:

● Page on user-visible symptoms, not on causes

○ ...and on immediate risks ("disk full in 4h")

● Err on the side of fewer pages

● Use causal metrics to answer why something is broken

https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit

Prometheus

Unhealthy or Missing Targets

Consider:

 alert: HighErrorRate

 expr: rate(errors_total{job="myjob"}[5m]) > 10

 for: 5m

Congrats, amazing alert!

But what if your targets are down or absent in SD?

 ⇨ empty expression result, no alert!

Prometheus

Unhealthy or Missing Targets

⇨ Always have an up-ness and presence alert per job:

 # (Or alert on up ratio or minimum up count).

 alert: MyJobInstanceDown

 expr: up{job="myjob"} == 0

 for: 5m

 alert: MyJobAbsent

 expr: absent(up{job="myjob"})

 for: 5m

Prometheus

"for" Duration

Don't make it too short or missing!

 alert: InstanceDown

 expr: up == 0

Single failed scrape causes alert!

Prometheus

"for" Duration

Don't make it too short or missing!

 alert: InstanceDown

 expr: up == 0

 for: 5m

Prometheus

"for" Duration

Don't make it too short or missing!

 alert: MyJobMissing

 expr: absent(up{job="myjob"})

Fresh (or long down) server may immediately alert!

Prometheus

"for" Duration

Don't make it too short or missing!

 alert: MyJobMissing

 expr: absent(up{job="myjob"})

 for: 5m

Prometheus

"for" Duration

⇨ Make this at least 5m (usually)

Prometheus

"for" Duration

Don't make it too long!

 alert: InstanceDown

 expr: up == 0

 for: 1d

No for persistence across restarts! (#422)

https://github.com/prometheus/prometheus/issues/422

Prometheus

"for" Duration

⇨ Make this at most 1h (usually)

Prometheus

Preserve Common / Useful Labels
Don't:

 alert: HighErrorRate

 expr: sum(rate(...)) > x

Do (at least):

 alert: HighErrorRate

 expr: sum by(job) (rate(...)) > x

Useful for later routing/silencing/...

Prometheus

Querying

Prometheus

Scope Selectors to Jobs

● Metric name has single meaning only within one binary (job).

● Guard against metric name collisions between jobs.

● ⇨ Scope metric selectors to jobs (or equivalent):

Don't: rate(http_request_errors_total[5m])

Do: rate(http_request_errors_total{job="api"}[5m])

Prometheus

Order of rate() and sum()
Counters can reset. rate() corrects for this:

Prometheus

Order of rate() and sum()
sum() before rate() masks resets!

Prometheus

Order of rate() and sum()
sum() before rate() masks resets!

Prometheus

Order of rate() and sum()

⇨ Take the sum of the rates, not the rate
of the sums!

(PromQL makes it hard to get wrong.)

Prometheus

rate() Time Windows
rate() needs at least two points under window:

Prometheus

rate() Time Windows
failed scrape + short window = empty rate() result:

Prometheus

rate() Time Windows
Also: window alignment issues, delayed scrapes

Prometheus

rate() Time Windows

⇨ To be robust, use a rate() window of
at least 4x the scrape interval!

Prometheus

Monitoring Topology

Prometheus

Uber-Exporters

or...

Per-Process Exporters?

Prometheus

Per-Machine Uber-Exporters

BAD:

● operational bottleneck

● SPOF, no isolation

● can’t scrape selectively

● harder up-ness monitoring

● harder to associate metadata

Prometheus

One Exporter per Process

BETTER!

● no bottleneck

● isolation between apps

● allows selective scraping

● integrated up-ness monitoring

● automatic metadata association

Prometheus

Similar Problem: Abusing the Pushgateway

See https://prometheus.io/docs/practices/pushing/

https://prometheus.io/docs/practices/pushing/

Prometheus

Abusing Federation

Prometheus Prometheus
federate all metrics

Don't use federation to fully sync one
Prometheus server into another: inefficient
and pointless (scrape targets directly instead).

Use federation for:

● Pulling selected metrics from other
team's Prometheus

● Hierarchical federation for scaling.
See:
https://www.robustperception.io/scal
ing-and-federating-prometheus/

https://www.robustperception.io/scaling-and-federating-prometheus/
https://www.robustperception.io/scaling-and-federating-prometheus/

Prometheus

Thanks!

